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Abstract Stalk bending strength (SBS) is a reliable

indicator for evaluating stalk lodging resistance of maize

plants. Based on biomechanical considerations, the maxi-

mum load exerted to breaking (Fmax), the breaking moment

(Mmax) and critical stress (rmax) are three important

parameters to characterize SBS. We investigated the

genetic architecture of SBS by phenotyping Fmax, Mmax

and rmax of the fourth internode of maize plants in a

population of 216 recombinant inbred lines derived from

the cross B73 9 Ce03005 evaluated in four environments.

Heritability of Fmax, Mmax and rmax was 0.81, 0.79 and

0.75, respectively. Fmax and rmax were positively corre-

lated with several other stalk characters. By using a linkage

map with 129 SSR markers, we detected two, three and two

quantitative trait loci (QTL) explaining 22.4, 26.1 and

17.2 % of the genotypic variance for Fmax, Mmax and rmax,

respectively. The QTL for Fmax, Mmax and rmax located in

adjacent bins 5.02 and 5.03 as well as in bin 10.04 for Fmax

were detected with high frequencies in cross-validation. As

our QTL mapping results suggested a complex polygenic

inheritance for SBS-related traits, we also evaluated the

prediction accuracy of two genomic prediction methods

(GBLUP and BayesB). In general, we found that both

explained considerably higher proportions of the genetic

variance than the values obtained in QTL mapping with

cross-validation. Nevertheless, the identified QTL regions

could be used as a starting point for fine mapping and gene

cloning.

Abbreviations

SBS Stalk bending strength

RPR Rind penetrometer resistance

NIRS Near-infrared reflectance spectroscopy

FIAG The fourth internode above ground

Fmax The maximum load exerted to breaking
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Mmax Breaking moment

rmax Critical stress

Ld Larger diameter of cross section

Sd Smaller diameter of cross section

InL Internode length

FreW Fresh weight of the internode

DryW Dry weight of the internode

InW Internode water content

FreW/V Fresh weight of internode per unit volume

DryW/V Dry weight of internode per unit volume

ADL/V Acid detergent lignin content per unit volume

CEL/V Cellulose content per unit volume

Introduction

Maize plays an important role in securing the world’s food

supply, in animal husbandry and in the deep-processing

industry. According to the statistics of the Food and

Agriculture Organization (FAO), global production of

maize in 2010 and 2011 amounted to 849 and 878 million

tons, respectively, exceeding that of wheat and rice.

However, stalk lodging causes yield losses in maize cul-

tivation ranging between 5 and 20 % annually worldwide

(Flint-Garcia et al. 2003).

The most direct way to evaluate stalk lodging resistance

is counting the number of lodged plants at harvest. Since

lodging strongly depends on the environmental conditions

(Thompson 1963; Hu et al. 2012), it cannot always be

reliably determined in field trials. Many studies (Zuber

et al. 1961; Colbert et al. 1984; Jia et al. 1992; Gou et al.

2007) have found that stalk mechanical strength is posi-

tively correlated with stalk lodging resistance in the field.

Enhancing overall mechanical strength in maize will make

stalks stronger and ultimately reduce yield and grain

quality losses (Ching et al. 2010). Since stalk lodging is

extremely affected by the environmental conditions and,

therefore, has often a low heritability, stalk mechanical

strength can be viewed as a reliable indicator for evaluating

stalk lodging resistance.

Several methods were developed and applied to evaluate

stalk mechanical strength. Zuber and Grogan (1961) mea-

sured stalk crushing strength, whereas Sibale et al. (1992)

used rind penetrometer resistance (RPR). Compared to

these two traits, stalk bending strength (SBS) is more

closely associated with stalk lodging in the field because

under natural conditions, stalk lodging occurs when the

stalk bending level exceeds the critical bending point

(Yuan et al. 2002). Thus, bending deformation can be used

to characterize the process of stalk lodging and the maxi-

mum load exerted to breaking (Fmax), the breaking moment

(Mmax) and the critical stress (rmax) are three important

parameters for characterizing bending strength (Gere and

Timoshenko 1984).

Previous studies on SBS in different crops mainly

focused on phenotypic correlations with stalk mechanical

strength and the expression of candidate genes. In barley,

Kokubo et al. (1989, 1991) used rmax to determine the

culm strength and studied the relationship between rmax

and culm components. In rice, Sun (1987) suggested the

ratio of Fmax to the product of culm length and ear weight

as a measure to select for lodging resistance and Li et al.

(2003) studied the relationship between Fmax and the

content of cellulose and lignin. In wheat, Ma (2009) found

elevated expression levels of mRNA and proteins of the

wheat COMT gene (TaCM) in cultivars with higher

bending strength. In maize, Appenzeller et al. (2004)

studied the relationship between Fmax and the content of

dry matter and cellulose per unit length in the stalk.

Mapping of quantitative trait loci (QTL) represents a

powerful and well-established tool to analyze the genetic

architecture of complex traits such as stalk mechanical

strength. Flint-Garcia et al. (2003) and Hu et al. (2012)

reported QTL for RPR in maize. For SBS in maize, only

one QTL mapping study (Ching et al. 2010) analyzed QTL

for Fmax without cross-validation and did not consider

Mmax and rmax, which are also crucial parameters to

characterize SBS according to the theory of biomechanics.

Thus, the main goal of this study was to investigate the

most relevant parameters (Fmax, Mmax, rmax) for SBS as

well as three related morphological traits and seven stalk

component traits in a population of 216 recombinant inbred

lines (RILs) derived from a cross of two elite maize inbred

lines evaluated in four environments. Our objectives were

to (1) estimate genetic variances and heritability for Fmax,

Mmax, rmax and correlations of SBS with other traits; (2)

detect and locate QTL for SBS and related traits; (3)

evaluate the reliability of these QTL by means of cross-

validation; and (4) compare the prospects of marker-

assisted and genomic selection for SBS-related traits.

Materials and methods

Plant materials and field experiments

Stalks of high-oil maize genotypes have lower content of

neutral detergent fiber (NDF), acid detergent fiber (ADF)

and acid detergent lignin (ADL), but higher in vitro dry

matter digestibility (IVDMD) than normal maize geno-

types (Bai et al. 2005; Wang 2009), which is one of the

potential reasons for their higher lodging (Hu et al. 2012;

Li et al. 2003; Zuber et al. 1977). Higher lodging of high-

oil maize than normal maize was also found in practical

high-oil maize breeding by ourselves and other breeders
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(Lauer 1995). Therefore, high-oil maize was chosen as a

parent susceptible to stalk lodging of our mapping popu-

lation. Ce03005 with white kernels, a purple stem and an

oil content of 8.52 % is a typical high-oil inbred line and

suitable to serve as a lodging susceptible parent based on

our previous research (Wang 2009). In contrast, the other

parent line B73 is a widely used elite line from the stiff

stalk heterotic group known for its excellent stalk lodging

resistance. Therefore, our mapping population of 216 RILs

was derived from the cross between B73 and Ce03005. The

production and background of this population were

described in detail in a companion study (Hu et al. 2012).

In 2009 and 2010, the 216 RILs, the two parent lines and

the F1 generation were planted in the Changzhi, Shanxi

Province, and Quzhou experiment station of China Agri-

cultural University, Hebei Province, China. At each loca-

tion, a randomized complete block design was utilized with

two replications for each genotype. In each block, plants

were sown in single rows, 3 m long, with a density of

60,000 plants/ha. Standard agronomic practices such as

irrigation, fertilization and weeding were followed during

the whole vegetation period to ensure a uniform stand.

Trait evaluation

Morphological trait measurements

Based on observations over many years of breeding prac-

tice in North China, we found that the fourth internode

above ground (FIAG) of maize plants at the milky stage is

highly sensitive to stalk lodging in the field. Hence, we

evaluated three plants per plot at the milky stage with

similar plant height and stem diameter. We measured the

phenotypes for the FIAG with the same materials as in our

companion study on RPR (Hu et al. 2012). For FIAG

testing of each plant, the internode length (InL), the larger

diameter of cross section (Ld) and the smaller diameter of

cross section (Sd) were measured with an electronic

micrometer. Afterward, the FIAG of the plants was cut

with a garden shear on the same day for all lines. Fresh

weight of the internode (FreW) was determined with an

electronic scale.

Three-point bending test

The test pieces were placed on an electronic universal

testing machine (RGT-2; Shenzhen, China). Fmax is the

maximum load that can be exerted to reach the critical

breaking limit or the bending limit force. It was measured

with a precision of 0.2 N and a displacement velocity of

20 mm/min as described by Kokubo et al. (1989). Mmax

represents the limit moment a stem can support before it

breaks. rmax is the maximal stress when the force moment

(M) reaches Mmax (Gere and Timoshenko 1984).

Near-infrared reflectance spectroscopy (NIRS) analysis

After completing the three-point bending test, the fresh

internodes were immediately enzyme deactivated in a

forced-air oven at 105 �C for 30 min, and then all samples

were air dried at a bleachery for 10–14 days to measure dry

weight (DryW). Simultaneously, internode water content

(InW), fresh weight per unit volume (FreW/V) and dry

weight per unit volume (DryW/V) were determined.

Afterward, the three samples of FIAG collected in each

plot were mixed, crushed, homogenized and then stored in

a paper bag. After drying in a forced-air oven at 45 �C for

48 h, all samples were scanned using a near-infrared

spectroscopy (NIRS) instrument (Vector 22/N, Bruker,

Germany). Acid detergent lignin (ADL) and cellulose

(CEL) contents were determined by NIRS using calibration

equations developed for maize plants. Modified partial

least squares (Shenk et al. 1991) were employed with the

OPUS 6.0 Bruker software (Bruker) for setting up the

calibration equations. Coefficients of determination for

ADL and CEL for cross-validation (R2
cv) and external

validation (R2
val) were described by Hu et al. (2012).

Phenotypic data analysis

Pairwise comparisons of means of the parents (�P), the F1

generation and the RILs (RIL) were tested for significance

with multiple t tests implemented in SAS PROC GLM

(SAS Institute 2008). Analyses of variance were performed

using the following linear mixed model:

Yijk ¼ lþ Gi þ Ej þ GEij þ Rk Eð Þ þ eijk:

Here, Yijk is the phenotypic value of genotype i in

environment j and replication k; l is the overall mean; Gi

is the effect of inbred line i; Ej is the effect of

environment j, treating each year–location combination as

an environment; GEij is the interaction between inbred line

i and environment j; Rk (E) is the block effect nested within

each environment; and eijk is the random error. Variance

components of the genotypic variance (r2
G), genotype-by-

environment interaction variance (r2
GE) and error variance

(r2) were estimated by the restricted maximum likelihood

(REML) method using PROC MIXED in SAS (SAS

Institute 2008) and treating all terms in the model equation

as random effects except l. Heritability (h2) on an entry-

mean basis was estimated as described by Hallauer

et al. (2010). Coefficients of phenotypic and genotypic

correlation were estimated following Mode and Robinson

(1959) using the software PlabStat (Utz 2010). For
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obtaining the phenotypic data for the QTL analysis, we

calculated best linear unbiased estimates (BLUEs) across

environments for all genotypes by treating the effects of

lines as fixed. In contrast to best linear unbiased predictions

(BLUPs), BLUEs are not shrunken toward the mean, and

thus, avoid artifacts arising from twofold shrinkage (Piepho

et al. 2012).

Molecular data collection and linkage map construction

Genomic DNA extraction and marker analyses were per-

formed as described in detail in our companion study (Hu

et al. 2012). Briefly, 129 polymorphic SSR markers were

chosen for uniform coverage of the maize genome and

employed for screening the RIL population to develop a

genetic linkage map constructed using Icimapping 3.0

(Wang et al. 2010). An LOD threshold of 3.0 was used to

assign markers to the same linkage group. Observed fre-

quencies at each marker were tested against the expected

Mendelian segregation ratio of 1:1 using a v2 test for

goodness of fit and a Bonferroni correction for multiple

tests. The number of heterozygous marker loci in each RIL

was calculated by a simple program developed by R soft-

ware (R Core Team 2012).

QTL analysis and cross-validation

Since the segregating population was an advanced gener-

ation RIL population, an additive genetic model was

chosen for QTL analysis, using the BLUEs across envi-

ronments as phenotypic data. We employed composite

interval mapping (CIM) by the regression approach (Haley

and Knott 1992) in combination with the use of cofactors

(Jansen and Stam 1994; Zeng 1994). A two-step procedure

was utilized for QTL detection. In the first step, cofactors

were selected by stepwise multiple linear regression based

on the Schwarz Bayesian Criterion (Schwarz 1978).

Cofactor selection was performed using Proc GLMSE-

LECT implemented in the statistical software SAS (SAS

Institute 2008). In the second step, we calculated a P value

for the F test with a full model (including marker effects)

versus a reduced model (without marker effects). Then,

the LOD score was calculated from the formula LOD ¼
n
2
log10 F df

n�df�1

� �
þ 1

h i
(Broman and Sen 2009). An LOD

threshold of 3.0 was used to determine QTL for all traits

corresponding to an experiment-wise type I error of

P \ 0.10 based on 2,000 permutations (Doerge and Chur-

chill 1996). Genome-wide scans for QTL were conducted

using the statistical software R (R Core Team 2012).

Because there were not suitable public software packages

in R available for our case, we developed the procedure by

ourselves. LOD support intervals were calculated by find-

ing the location at either side of the estimated QTL location

that corresponded to a decrease in 1 LOD score. The total

proportion (pG) of r2
G explained by the detected QTL was

calculated by fitting all QTL simultaneously in a linear

model to obtain the R2
adj values. The ratio pG ¼ R2

adj=h2

yielded the proportion of genotypic variance explained by

the detected QTL (Utz et al. 2000).

Fivefold cross-validation was used to examine the reli-

ability of QTL mapping results with 1,000 runs. In each

run, 80 % of the lines were sampled and used as an esti-

mation set (ES) for QTL detection; the remaining 20 % of

the lines served as test set (TS) for validation of the

detected QTL and estimation of the proportion (pG,TS) of

r2
G explained as described in detail by Würschum et al.

(2012).

Comparison of the prospects of phenotypic, marker-

assisted and genomic selection

Under the assumption of the same selection intensity as

well as equal cycle length for each selection method, the

efficiency of marker-assisted selection based on the

detected QTL relative to that of phenotypic selection is

given by the ratio pG,TS: h2 (Lande and Thompson 1990).

For evaluating the prospects of genomic selection, we

compared the Bayesian GBLUP (Kärkkäinen and Sillanpää

2012) and BayesB (Meuwissen et al. 2001) methods in the

implementations described by Technow et al. (2013) and

Technow and Melchinger (2013), respectively. To allow

for a direct comparison with h2 and pG,TS, we determined

the proportion of the genetic variance (pG,GS) in cross-

validation averaged over 50 runs. Individual values of

pG,GS were calculated as the square of the prediction

accuracy, which in turn was computed as the Pearson

correlation between predicted and observed values divided

by the square root of the heritability. All computations for

genomic prediction were conducted within the R statistical

environment (R Core Team 2012).

Results

Phenotypic data analysis

No significant (P \ 0.05) differences were found between

the means of the two parents (�P) and the RIL population

(RIL) for Fmax, Mmax and rmax as well as ten related stalk

traits (Table 1). The means of the F1 generation exceeded �P

and RIL for Mmax, Ld, Sd, FreW, DryW and ADL/V.

Further, the mean of the F1 generation surpassed the two

parents for Mmax (Supplement Fig. 1). Little transgressive
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segregation was observed for Fmax and Mmax; however, a

relatively large proportion of lines fell outside the range of

the parental lines for rmax (47.4 %). Estimates of r2
G and

r2
GE were highly significant for all traits. The heritabilities

ranged between 0.51 for FreW/V and 0.85 for Ld, with

moderately high values for Fmax (0.81), Mmax (0.79) and

rmax (0.75).

Correlation among traits

Fmax was positively correlated with Mmax, Ld, Sd, FreW,

DryW, InW and FreW/V, but negatively with InL

(Table 2). Mmax showed similar correlations with all traits

with the exception of a positive correlation with InL. By

contrast, rmax was negatively correlated with Ld, Sd, FreW

Table 1 Means of parents (�P), F1 generation (F1) and RILs (RIL),

estimates of genotypic (r2
G), genotype 9 environment interaction

(r2
GE) and error variances (r2

e ), heritability (h2) and proportion of

explained genetic variance (pG.GS) in cross-validation for genomic

selection methods GBLUP and BayesB of stalk bending-related traits

Trait Unit �P F1 RIL r2
G r2

GE r2
e h2 pG.GS

b

GBLUP BayesB

SBS traits

Fmax N 178.4aa 219.5a 181.1a 1,644.6** 999.9** 3,307.9 0.81 28.1 29.8

Mmax N�m 4.86b 7.50a 4.93b 1.06** 0.744** 2.26 0.79 27.2 24.4

rmax Mpa 10.0a 10.5a 10.3a 2.19** 1.60** 7.76 0.75 14.6 11.4

Geometric traits

Ld mm 17.6b 20.6a 18.0b 2.22** 1.03** 3.58 0.85 20.1 22.5

Sd mm 1.59b 1.89a 1.59b 1.47** 0.716** 2.36 0.84 16.6 17.2

InL cm 13.1ab 14.7a 11.3b 1.77** 1.26** 2.79 0.80 30.3 27.0

Stalk components traits

FreW g 36.8b 56.5a 33.4b 37.6** 31.0** 61.0 0.79 16.6 14.8

DryW g 7.14b 9.06a 6.26b 1.36** 1.37** 2.47 0.75 16.8 13.5

InW % 80.2a 72.75a 80.7a 3.98** 3.08** 6.58 0.79 35.7 38.0

FreW/V g/cm3*100 137.5a 132.8a 132.1a 6.01** 135.7** 591.4 0.51 9.7 11.7

DryW/V g/cm3*100 26.0a 22.7a 25.1a 6.33** 10.2** 28.5 0.63 27.2 22.8

ADL/V g/dm3 7.40b 9.61a 7.45b 1.32** 0.420** 2.96 0.73 27.4 25.1

CEL/V g/dm3 59.6ab 91.5a 58.4b 37.5** 21.6** 98.3 0.68 32.5 33.7

** Significant at P \ 0.01
a Means in a line followed by the same letter are not significantly different from each other based on a t test at the 5 % probability level
b Means of pG.GS estimates over 50 runs of five-fold cross-validation

Table 2 Phenotypic (rp) and

genotypic (rg) correlation

coefficients between stalk

strength traits and other traits

*, ** Phenotypic correlation

coefficient significant at the

0.05 and 0.01 probability level,

respectively
? , ?? Genotypic correlation

coefficient exceeds once or

twice its standard error,

respectively

Trait Fmax Mmax rmax

rp rg rp rg rp rg

Fmax – – 0.86** 0.86?? 0.13 0.07

Mmax 0.86** 0.86?? – – 0.19** 0.13?

rmax 0.13 0.07 0.19** 0.13? – –

RPR 0.37** 0.37?? 0.46** 0.45?? 0.41** 0.46??

Ld 0.67** 0.69?? 0.73** 0.75?? -0.49** -0.53??

Sd 0.67** 0.69?? 0.77** 0.80?? -0.42** -0.45??

InL -0.37** -0.41?? 0.14* 0.10? 0.09 0.10?

FreW 0.50** 0.52?? 0.81** 0.83?? -0.14* -0.17?

DryW 0.30** 0.28?? 0.67** 0.65?? 0.03 -0.01

InW 0.28** 0.37?? 0.18** 0.27?? -0.29** -0.29??

FreW/V 0.40** 0.45?? 0.20** 0.23?? 0.41** 0.45??

DryW/V 0.01 -0.09 -0.03 -0.12? 0.53** 0.56??

ADL/V -0.06 -0.12? -0.08 -0.14? 0.38** 0.37??

CEL/V 0.01 -0.08 -0.10 -0.21?? 0.31** 0.24??
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and InW, and positively with FreW/V, DW/V, ADL/V and

CEL/V. RPR measured for the internode below the primary

ear (IBPE) was positively correlated with Fmax, Mmax and

rmax (P \ 0.05).

Marker and QTL analyses

Only a small number (14) of markers showed significant

segregation distortion. These distorted markers were

distributed on seven chromosomes (Supplement Fig. 2).

The observed heterozygosity at the 129 markers was\5 %

in 89 % of the lines and more than 45 % of the lines were

heterozygous at \1 % of the loci (Supplement Fig. 3).

The number of QTL detected for Fmax, Mmax and rmax

was two, three and two, explaining 22.4, 26.1 and 17.2 %

of r2
G, respectively (Table 3). The QTL for Fmax and Mmax

had overlapping support intervals on chromosome 10.

Likewise, the QTL for Mmax and rmax had common

Table 3 Position, estimated effect of QTL, proportion of the

genotypic variance (pG) explained by QTL, QTL frequency (Freq)

and proportion of genotypic variance(pG,TS) explained by the detected

QTL in the test set by fivefold of cross-validation with 1,000 runs for

SBS and related traits

Trait Bin Positiona (cM) Flanking markers LOD ab pG % Cross-validation

Freq (%) pG,TS (%)

Fmax

5.02 65.6 (58.9, 72.4) umc2115, umc1447 4.8 -16.3 22.4 55.8 14.2

10.04 56.1 (51.3, 59.7) umc1697, phi084 5.0 13.9 85.2

Mmax

5.03 83.0 (72.4, 93.7) umc1447, umc1171 4.5 -0.42 26.1 68.8 7.2

8.03 70.9 (63.3, 78.6) phi100175, umc1562 3.7 0.37 44.8

10.03 55.0 (48.1, 62.9) phi050, umc1697 3.1 0.29 23.0

rmax

5.03 93.2 (82.5, 105.8) umc1447, umc1171 4.0 0.63 17.2 61.6 3.7

10.06 114.4 (106.6, 124.3) umc1993, bnlg1450 3.0 0.50 23.8

Ld

5.03 87.1 (81.5, 93.7) umc1447, umc1171 11.6 -0.11 25.5 100.0 24.8

Sd

5.03 88.1 (82.5, 94.7) umc1447, umc1171 9.9 -0.08 22.1 100.0 22.0

InL

1.03 69.5 (63.0, 76.1) umc1403, umc1169 3.6 0.52 18.1 43.4 2.3

6.07 250.4 (241.6, 259.1) phi299852, phi123 4.0 -0.54 35.8

FreW

5.03 90.1 (77.5, 102.8) umc1447, umc1171 3.5 -2.5 18.1 52.6 5.5

8.03 67.9 (62.3, 75.5) phi100175, umc1562 4.0 2.2 52.2

DryW

8.03 67.9 (62.3, 74.5) phi100175, umc1562 4.5 0.49 11.6 64.4 6.4

InW

6.01 116.8 (115.2, 117.5) bnlg1867, umc2056 8.4 -0.74 24.5 95.0 18.8

7.04 174.2 (170.6, 175.2) dupssr13, phi116 6.7 -0.71 34.4

DryW/V

6.01 116.8 (114.1, 118.9) bnlg1867, umc2056 4.6 0.01 14.1 77.0 7.7

ADL/V

5.03 99.2 (89.6, 108.9) umc1447, umc1171 5.5 0.054 21.3 82.2 7.9

10.02 28.2 (20.3, 35.2) umc2034, umc2016 3.9 -0.042 40.2

CEL/V

3.05 93.9 (86.4, 102.4) phi053, umc1539 4.0 0.26 21.1 50.0 10.6

5.03 101.3 (88.6, 106.8) umc1447, umc1171 3.7 0.22 43.8

a QTL support interval given in brackets
b Estimate of allele effect
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flanking markers in bin 5.03 adjacent to the QTL region of

Fmax on chromosome 5. One major QTL was also detected

for both Ld and Sd in bin 5.03, which explained 25.5 and

22.1 % of r2
G, respectively. The two QTL for InL had no

common support intervals with those for Ld and Sd, and

accounted together for 18.1 % of r2
G. Except for FreW/V,

where no QTL was found, one or two QTL were detected

for the other stalk component traits, explaining between

11.6 and 24.5 % of r2
G.

Cross-validation

For most QTL identified in the full data set, high fre-

quencies of re-detection were observed in the 1,000 runs of

cross-validation (Table 3). The frequency of QTL re-

detection was 100 % for the QTL detected for Ld and Sd,

and ranged between 55.8 and 68.8 % for the QTL detected

for Fmax, Mmax and rmax on chromosome 5. The pG,TS

values estimated from the TS ranged from 2.3 % for InL to

24.8 % for Ld (Table 3). For the three SBS traits, Fmax

showed slightly higher pG,TS values (14.2 %) compared to

Mmax and rmax.

In genomic selection, estimates of pG,GS were for both

GBLUP and BayesB (Table 1) considerably higher than

those of pG,TS (Table 3). The only exceptions were Ld and

Sd, where the mapped QTL explained in cross-validation a

slightly greater proportion of r2
G. The differences in pG,GS

between GBLUP and BayesB were usually small, with

BayesB yielding better results for six of the traits and

GBLUP for the remaining seven traits.

Discussion

RILs performance and heritability of stalk bending

strength traits

The contrast between �P and RIL provides an estimate of

the net contribution of additive 9 additive epistatic inter-

actions across loci (Melchinger et al. 2007). Since this

difference was not significant for any trait, we conclude

that QTL underlying SBS-related traits display mainly

additive gene action or positive and negative addi-

tive 9 additive epistatic effects canceled each other in the

sum. The contrast F1 – �P indicated significant mid-parent

heterosis for 6 out of the 13 traits, and Mmax even showed

strong high-parent heterosis, suggesting dominance in

addition to additive gene action for these traits. The large

proportion of transgressive segregation for rmax is mainly

attributable to the small phenotypic difference between the

two parents that were not selected for rmax and shows that

both parents harbor positive and negative genes for this

trait. A similar phenomenon was reported for RPR in a

segregating population of B73 9 M47 (Flint-Garcia et al.

2003).

According to the theory of mechanics of materials (Gere

and Timoshenko 1984), SBS is determined by Fmax, Mmax

and rmax. In rice, Sun (1987) reported h2 = 0.84 for Fmax,

which is in close agreement with the estimates of Fmax,

Mmax and rmax in our study. For RPR, h2 estimates ranged

between 0.81 and 0.92 in five different maize populations

(Flint-Garcia et al. 2003; Hu et al. 2012), suggesting that

stalk strength-related traits have generally a high herita-

bility. Heritability is an important factor in determining the

power of QTL detection (Charcosset and Gallais 1996). In

this study, the heritability exceeded 0.73 for ten traits and

only one trait (FreW/V) had a medium h2 of 0.51. Thus, all

traits were measured with high precision and this provided

a solid basis for QTL mapping.

Correlation and co-locations of QTL among traits

Sun (1987) found that Fmax positively correlated with stem

diameter, DryW and dry weight per unit length in rice.

Appenzeller et al. (2004) concluded that structural dry

matter explained approximately 80 % of Fmax in maize. In

our experiment, we observed positive correlations of Fmax

with Ld, Sd and DryW, which are consistent with the

findings of both studies and the theory of material

mechanics in that Fmax has a tight relation to the geometric

attributes of materials (Gere and Timoshenko 1984).

Positive correlations were also observed between Fmax and

FreW as well as between InW and FreW/V, which implies

that water content is crucial for the stalk strength of maize

plants at the milky stage, because the turgor pressure from

water in cells translates into increased bending strength of

the stalk. These findings are supported by other studies on

stalk lodging in maize (Stojsin et al. 1991; Gao et al. 2003).

In addition, one QTL of Fmax shared one flanking marker

with QTL for Ld, Sd and FreW, which suggests either

pleiotropy or close linkage of QTL as an explanation of

these correlations.

Mmax showed similar correlations as Fmax with the other

traits and both traits were also tightly correlated with each

other. Therefore, we recommend measuring only Fmax in

practical breeding programs for improving stalk lodging

resistance, because calculation of Mmax is based on Fmax

and the InL. rmax was negatively correlated with Ld, Sd

and InW, but positively correlated with DryW/V, ADL/V

and CEL/V. Similar results between rmax and stalk

chemical components were also reported by Kokubo et al.

(1989) in barley. These correlations can be explained by

the theory of material mechanics in that rmax is hardly

influenced by the geometric properties of the stalk, but

reveals the essential attributes of the material that can be
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reflected by the dry matter content and stalk components

per unit volume in our case (Gere and Timoshenko 1984).

This hypothesis is corroborated by the overlapping QTL

support intervals found between rmax and ADL/V, CEL/V.

While the positive correlation of SBS traits with ADL/V

and CEL/V has no negative effect in the production of

grain maize (Hansey and Leon 2011), it is expected to have

negative consequences on the digestibility of stover in the

production of forage maize, but this warrants further

research.

In a companion study with the same plant material, Hu

et al. (2012) detected nine QTL for RPR, covering nine

chromosomes. A comparison with the QTL results for

Fmax, Mmax and rmax in this study revealed overlapping

QTL support intervals in adjacent bins 10.03 and 10.04 for

RPR, Fmax and Mmax, and in bin 8.03 for RPR and Mmax.

This suggests that RPR and SBS are influenced by some

common genes. In addition, RPR correlated positively with

Fmax and Mmax, which provides further indication for a

common genetic basis of these traits. In addition, RPR

primarily reflects the rind mechanical strength, which

contributes mainly to the mechanical strength of the intact

internode (Zuber et al. 1980).

We observed segregation distortion between adjacent

markers in regions on chromosomes 1, 3, 8 and 9 (Sup-

plemental Fig. 2). It is well understood that segregation

distorted loci will affect estimates of recombination fre-

quencies between marker loci. Since chromosome regions

with segregation distortion can also harbor QTL, deleting

these markers from the linkage map can result in missing

QTL. Xu (2008) concluded that if segregation distortion is

present but ignored, this will slightly decrease the power of

QTL detection. Moreover, QTL mapping is hardly affected

if the distorted markers are not closely linked with any

QTL (Zhang et al. 2010). Since no close linkage was found

between any QTL and distorted markers in our study, we

conclude that distorted markers had little influence on the

QTL detection power in our study.

Chromosome regions harboring QTL for stalk bending

strength traits

An investigation of Ching et al. (2010) on SBS in maize

with 189 non-Stiff Stalk (NSS) lines reported results on

Fmax for which QTL were detected on chromosomes 1, 5

and 9; the QTL located in bins 5.02 and 5.03 was the most

important one and overlaps with the QTL for Fmax on

chromosome 5 found in our study. Since this QTL was also

detected with high frequencies in the 1,000 cross-validation

runs, this corroborates with our conclusion that bins 5.02

and 5.03 harbor candidate genes for Fmax. A further QTL

for Fmax in bin 10.04, found with a high frequency in cross-

validation, was not detected by Ching et al. (2010).

No reports were available on QTL for Mmax and rmax.

For both traits, we detected QTL on the same chromosomes

as the two QTL of Fmax, but on different positions. The

QTL for Mmax and rmax on chromosome 10 had relatively

low detection frequencies in cross-validation, illustrating

the necessity for further research with a larger population

size and a higher marker density. However, the QTL in

bins 5.02 and 5.03 had high detection frequencies in cross-

validation for Fmax, Mmax and rmax, suggesting that this

region merits further investigations for finding candidate

genes underlying SBS.

The main application of QTL mapping results is marker-

assisted selection. For improving SBS, phenotypic evalu-

ations of Fmax, Mmax and rmax are expensive and labor

intensive. Therefore, molecular marker-based technologies

offer a more efficient way for improving SBS. In this study,

the ratio of pG,TS: h2 for the three traits was \0.60, indi-

cating that conventional phenotypic selection is more

efficient than the QTL-based marker-assisted selection for

improving SBS traits. Similar results were reported for

corn borer resistance traits (Bohn et al. 2001; Papst et al.

2004; Ordas et al. 2010). Nevertheless, the chromosome

regions in bins 5.02 and 5.03 harboring QTL for Fmax,

Mmax and rmax could be used as a starting point for fine

mapping and gene cloning for SBS-related traits. Since the

detected QTL explained only a moderate proportion of r2
G

in cross-validation, we conclude that SBS-related traits

show a complex polygenic inheritance. This hypothesis is

supported by the considerably greater values of pG,GS in

comparison to pG,TS, when using genomic prediction

methods such as GBLUP or BayesB. Thus, genomic

selection might be the method of choice to improve these

traits because it allows taking QTL with small effects into

account that otherwise remain undetected in QTL mapping

(Lorenz et al. 2011).

Conclusions

We found generally a high heritability and little evidence

of epistasis for the SBS-related traits in the B73 9

Ce03005 derived population of RILs. Fmax and Mmax were

positively correlated with Ld, Sd, InW, DryW and FreW of

intact internode, whereas rmax was negatively correlated

with Ld, Sd and water content, but positively correlated

with DryW/V, ADL/V and CEL/V. These correlations

among traits could be partly explained by co-locations of

corresponding QTL and were consistent with the theory of

material mechanics. We detected two chromosome regions

harboring QTL for SBS: one in bin 5.02 and 5.03 for Fmax,

Mmax and rmax, and another one in bin 10.04 for Fmax. All

these QTL had high re-detection frequencies in cross-

validation. Marker-assisted selection based on the QTL
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mapping results was comparatively less efficient than

conventional phenotypic selection and genomic selection,

but further studies on fine mapping and gene cloning for

stalk bending strength traits seem promising based on our

findings. Altogether, we conclude that the genetic archi-

tecture of SBS-related traits is highly polygenic. Since

these traits are also difficult and labor intensive to measure

in a breeding program, it seems that genomic selection is

the most promising avenue to improve these traits, given

the tremendous progress and decreasing prices for new

sequencing technologies and SNP assays that provide the

required genome coverage for this approach (Jannink et al.

2010).
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